Repositorio Institucional Ulima

A data mining approach to guide students through the enrollment process based on academic performance

Mostrar el registro sencillo del ítem

dc.contributor.author Vialardi-Sacín, César
dc.contributor.author Chue-Gallardo, Jorge
dc.contributor.author Peche, Juan-Pablo
dc.contributor.author Alvarado, Gustavo
dc.contributor.author Vinatea, Bruno
dc.contributor.author Estrella, Jhonny
dc.contributor.author Ortigosa, Álvaro
dc.contributor.other Vialardi-Sacín, César es_PE
dc.contributor.other Chue-Gallardo, Jorge es_PE
dc.contributor.other Peche, Juan-Pablo es_PE
dc.contributor.other Alvarado, Gustavo es_PE
dc.contributor.other Vinatea, Bruno es_PE
dc.contributor.other Estrella, Jhonny es_PE
dc.date.issued 2011
dc.identifier.citation Vialardi-Sacín, C., Chue-Gallardo, J., Peche, J. P., Alvarado, G., Vinatea, B., Estrella, J., y Ortigosa, Á. (2011). A data mining approach to guide students through the enrollment process based on academic performance. User modeling and user-adapted interaction, 21(1-2), 217-248. doi:10.1007/s11257-011-9098-4 es_ES
dc.identifier.issn 0924-1868
dc.identifier.uri http://repositorio.ulima.edu.pe/handle/ulima/1990
dc.description.abstract Student academic performance at universities is crucial for education management systems. Many actions and decisions are made based on it, specifically the enrollment process. During enrollment, students have to decide which courses to sign up for. This research presents the rationale behind the design of a recommender system to support the enrollment process using the students’ academic performance record. To build this system, the CRISP-DM methodology was applied to data from students of the Computer Science Department at University of Lima, Perú. One of the main contributions of this work is the use of two synthetic attributes to improve the relevance of the recommendations made. The first attribute estimates the inherent difficulty of a given course. The second attribute, named potential, is a measure of the competence of a student for a given course based on the grades obtained in relatedcourses. Data was mined using C4.5, KNN (K-nearest neighbor), Naïve Bayes, Bagging and Boosting, and a set of experiments was developed in order to determine the best algorithm for this application domain. Results indicate that Bagging is the best method regarding predictive accuracy. Based on these results, the “Student Performance Recommender System” (SPRS) was developed, including a learning engine. SPRS was tested with a sample group of 39 students during the enrollment process. Results showed that the system had a very good performance under real-life conditions. es_ES
dc.description.uri Indexado en Scopus
dc.format application/pdf es_PE
dc.language.iso eng
dc.publisher Springer
dc.rights info:eu-repo/semantics/openAccess es_PE
dc.rights.uri http://creativecommons.org/licenses/by-nc-sa/2.5/pe/ es_PE
dc.source Universidad de Lima es_PE
dc.source Repositorio Institucional es_PE
dc.subject Administración de sistemas de información
dc.subject Data mining
dc.subject.classification Ingenierías / Ingeniería de sistemas
dc.subject.classification Ciencias sociales / Educación
dc.title A data mining approach to guide students through the enrollment process based on academic performance es_ES
dc.type info:eu-repo/semantics/article es_PE
dc.type.other Artículo en Scopus es_PE
dc.identifier.journal User Modeling and User-Adapted Interaction
dc.publisher.country Países Bajos
dc.identifier.eissn 1573-1391
dc.description.peer-review Revisión por pares


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess

Buscar en el repositorio


Listar

Mi cuenta